[][src]Struct nalgebra::geometry::Isometry

#[repr(C)]
pub struct Isometry<N: RealField, D: DimName, R> where
    DefaultAllocator: Allocator<N, D>, 
{ pub rotation: R, pub translation: Translation<N, D>, // some fields omitted }

A direct isometry, i.e., a rotation followed by a translation, aka. a rigid-body motion, aka. an element of a Special Euclidean (SE) group.

Fields

rotation: R

The pure rotational part of this isometry.

translation: Translation<N, D>

The pure translational part of this isometry.

Methods

impl<N: RealField, D: DimName, R: Rotation<Point<N, D>>> Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn from_parts(translation: Translation<N, D>, rotation: R) -> Self[src]

Creates a new isometry from its rotational and translational parts.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::PI);
let iso = Isometry3::from_parts(tra, rot);

assert_relative_eq!(iso * Point3::new(1.0, 2.0, 3.0), Point3::new(-1.0, 2.0, 0.0), epsilon = 1.0e-6);

pub fn inverse(&self) -> Self[src]

Inverts self.

Example

let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let inv = iso.inverse();
let pt = Point2::new(1.0, 2.0);

assert_eq!(inv * (iso * pt), pt);

pub fn inverse_mut(&mut self)[src]

Inverts self in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 2.0);
let transformed_pt = iso * pt;
iso.inverse_mut();

assert_eq!(iso * transformed_pt, pt);

pub fn append_translation_mut(&mut self, t: &Translation<N, D>)[src]

Appends to self the given translation in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let tra = Translation2::new(3.0, 4.0);
// Same as `iso = tra * iso`.
iso.append_translation_mut(&tra);

assert_eq!(iso.translation, Translation2::new(4.0, 6.0));

pub fn append_rotation_mut(&mut self, r: &R)[src]

Appends to self the given rotation in-place.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::PI / 6.0);
let rot = UnitComplex::new(f32::consts::PI / 2.0);
// Same as `iso = rot * iso`.
iso.append_rotation_mut(&rot);

assert_relative_eq!(iso, Isometry2::new(Vector2::new(-2.0, 1.0), f32::consts::PI * 2.0 / 3.0), epsilon = 1.0e-6);

pub fn append_rotation_wrt_point_mut(&mut self, r: &R, p: &Point<N, D>)[src]

Appends in-place to self a rotation centered at the point p, i.e., the rotation that lets p invariant.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
let pt = Point2::new(1.0, 0.0);
iso.append_rotation_wrt_point_mut(&rot, &pt);

assert_relative_eq!(iso * pt, Point2::new(-2.0, 0.0), epsilon = 1.0e-6);

pub fn append_rotation_wrt_center_mut(&mut self, r: &R)[src]

Appends in-place to self a rotation centered at the point with coordinates self.translation.

Example

let mut iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);
let rot = UnitComplex::new(f32::consts::FRAC_PI_2);
iso.append_rotation_wrt_center_mut(&rot);

// The translation part should not have changed.
assert_eq!(iso.translation.vector, Vector2::new(1.0, 2.0));
assert_eq!(iso.rotation, UnitComplex::new(f32::consts::PI));

pub fn transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]

Transform the given point by this isometry.

This is the same as the multiplication self * pt.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(3.0, 2.0, 2.0), epsilon = 1.0e-6);

pub fn transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>[src]

Transform the given vector by this isometry, ignoring the translation component of the isometry.

This is the same as the multiplication self * v.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(3.0, 2.0, -1.0), epsilon = 1.0e-6);

pub fn inverse_transform_point(&self, pt: &Point<N, D>) -> Point<N, D>[src]

Transform the given point by the inverse of this isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_point(&Point3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Point3::new(0.0, 2.0, 1.0), epsilon = 1.0e-6);

pub fn inverse_transform_vector(&self, v: &VectorN<N, D>) -> VectorN<N, D>[src]

Transform the given vector by the inverse of this isometry, ignoring the translation component of the isometry. This may be less expensive than computing the entire isometry inverse and then transforming the point.

Example

let tra = Translation3::new(0.0, 0.0, 3.0);
let rot = UnitQuaternion::from_scaled_axis(Vector3::y() * f32::consts::FRAC_PI_2);
let iso = Isometry3::from_parts(tra, rot);

let transformed_point = iso.inverse_transform_vector(&Vector3::new(1.0, 2.0, 3.0));
assert_relative_eq!(transformed_point, Vector3::new(-3.0, 2.0, 1.0), epsilon = 1.0e-6);

impl<N: RealField, D: DimName, R> Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn to_homogeneous(&self) -> MatrixN<N, DimNameSum<D, U1>> where
    D: DimNameAdd<U1>,
    R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>>, 
[src]

Converts this isometry into its equivalent homogeneous transformation matrix.

Example

let iso = Isometry2::new(Vector2::new(10.0, 20.0), f32::consts::FRAC_PI_6);
let expected = Matrix3::new(0.8660254, -0.5,      10.0,
                            0.5,       0.8660254, 20.0,
                            0.0,       0.0,       1.0);

assert_relative_eq!(iso.to_homogeneous(), expected, epsilon = 1.0e-6);

impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

pub fn identity() -> Self[src]

Creates a new identity isometry.

Example


let iso = Isometry2::identity();
let pt = Point2::new(1.0, 2.0);
assert_eq!(iso * pt, pt);

let iso = Isometry3::identity();
let pt = Point3::new(1.0, 2.0, 3.0);
assert_eq!(iso * pt, pt);

pub fn rotation_wrt_point(r: R, p: Point<N, D>) -> Self[src]

The isometry that applies the rotation r with its axis passing through the point p. This effectively lets p invariant.

Example

let rot = UnitComplex::new(f32::consts::PI);
let pt = Point2::new(1.0, 0.0);
let iso = Isometry2::rotation_wrt_point(rot, pt);

assert_eq!(iso * pt, pt); // The rotation center is not affected.
assert_relative_eq!(iso * Point2::new(1.0, 2.0), Point2::new(1.0, -2.0), epsilon = 1.0e-6);

impl<N: RealField> Isometry<N, U2, Rotation2<N>>[src]

pub fn new(translation: Vector2<N>, angle: N) -> Self[src]

Creates a new 2D isometry from a translation and a rotation angle.

Its rotational part is represented as a 2x2 rotation matrix.

Example

let iso = Isometry2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);

assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));

pub fn translation(x: N, y: N) -> Self[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(angle: N) -> Self[src]

Creates a new isometry from the given rotation angle.

impl<N: RealField> Isometry<N, U2, UnitComplex<N>>[src]

pub fn new(translation: Vector2<N>, angle: N) -> Self[src]

Creates a new 2D isometry from a translation and a rotation angle.

Its rotational part is represented as an unit complex number.

Example

let iso = IsometryMatrix2::new(Vector2::new(1.0, 2.0), f32::consts::FRAC_PI_2);

assert_eq!(iso * Point2::new(3.0, 4.0), Point2::new(-3.0, 5.0));

pub fn translation(x: N, y: N) -> Self[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(angle: N) -> Self[src]

Creates a new isometry from the given rotation angle.

impl<N: RealField> Isometry<N, U3, Rotation3<N>>[src]

pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self[src]

Creates a new isometry from a translation and a rotation axis-angle.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

pub fn translation(x: N, y: N, z: N) -> Self[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(axisangle: Vector3<N>) -> Self[src]

Creates a new isometry from the given rotation angle.

pub fn face_towards(
    eye: &Point3<N>,
    target: &Point3<N>,
    up: &Vector3<N>
) -> Self
[src]

Creates an isometry that corresponds to the local frame of an observer standing at the point eye and looking toward target.

It maps the z axis to the view direction target - eyeand the origin to the eye.

Arguments

  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

pub fn new_observer_frame(
    eye: &Point3<N>,
    target: &Point3<N>,
    up: &Vector3<N>
) -> Self
[src]

Deprecated:

renamed to face_towards

Deprecated: Use Isometry::face_towards instead.

pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self[src]

Builds a right-handed look-at view matrix.

It maps the view direction target - eye to the negative z axis to and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local -z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self[src]

Builds a left-handed look-at view matrix.

It maps the view direction target - eye to the positive z axis and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

impl<N: RealField> Isometry<N, U3, UnitQuaternion<N>>[src]

pub fn new(translation: Vector3<N>, axisangle: Vector3<N>) -> Self[src]

Creates a new isometry from a translation and a rotation axis-angle.

Example

let axisangle = Vector3::y() * f32::consts::FRAC_PI_2;
let translation = Vector3::new(1.0, 2.0, 3.0);
// Point and vector being transformed in the tests.
let pt = Point3::new(4.0, 5.0, 6.0);
let vec = Vector3::new(4.0, 5.0, 6.0);

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

// Isometry with its rotation part represented as a Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::new(translation, axisangle);
assert_relative_eq!(iso * pt, Point3::new(7.0, 7.0, -1.0), epsilon = 1.0e-6);
assert_relative_eq!(iso * vec, Vector3::new(6.0, 5.0, -4.0), epsilon = 1.0e-6);

pub fn translation(x: N, y: N, z: N) -> Self[src]

Creates a new isometry from the given translation coordinates.

pub fn rotation(axisangle: Vector3<N>) -> Self[src]

Creates a new isometry from the given rotation angle.

pub fn face_towards(
    eye: &Point3<N>,
    target: &Point3<N>,
    up: &Vector3<N>
) -> Self
[src]

Creates an isometry that corresponds to the local frame of an observer standing at the point eye and looking toward target.

It maps the z axis to the view direction target - eyeand the origin to the eye.

Arguments

  • eye - The observer position.
  • target - The target position.
  • up - Vertical direction. The only requirement of this parameter is to not be collinear to eye - at. Non-collinearity is not checked.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::face_towards(&eye, &target, &up);
assert_eq!(iso * Point3::origin(), eye);
assert_relative_eq!(iso * Vector3::z(), Vector3::x());

pub fn new_observer_frame(
    eye: &Point3<N>,
    target: &Point3<N>,
    up: &Vector3<N>
) -> Self
[src]

Deprecated:

renamed to face_towards

Deprecated: Use Isometry::face_towards instead.

pub fn look_at_rh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self[src]

Builds a right-handed look-at view matrix.

It maps the view direction target - eye to the negative z axis to and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local -z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_rh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), -Vector3::z());

pub fn look_at_lh(eye: &Point3<N>, target: &Point3<N>, up: &Vector3<N>) -> Self[src]

Builds a left-handed look-at view matrix.

It maps the view direction target - eye to the positive z axis and the eye to the origin. This conforms to the common notion of right handed camera look-at view matrix from the computer graphics community, i.e. the camera is assumed to look toward its local z axis.

Arguments

  • eye - The eye position.
  • target - The target position.
  • up - A vector approximately aligned with required the vertical axis. The only requirement of this parameter is to not be collinear to target - eye.

Example

let eye = Point3::new(1.0, 2.0, 3.0);
let target = Point3::new(2.0, 2.0, 3.0);
let up = Vector3::y();

// Isometry with its rotation part represented as a UnitQuaternion
let iso = Isometry3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

// Isometry with its rotation part represented as Rotation3 (a 3x3 rotation matrix).
let iso = IsometryMatrix3::look_at_lh(&eye, &target, &up);
assert_eq!(iso * eye, Point3::origin());
assert_relative_eq!(iso * Vector3::x(), Vector3::z());

Trait Implementations

impl<N: RealField, D: DimName, R> PartialEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>> + PartialEq,
    DefaultAllocator: Allocator<N, D>, 
[src]

#[must_use]
default fn ne(&self, other: &Rhs) -> bool
1.0.0
[src]

This method tests for !=.

impl<N: RealField, D: DimName, R> From<Isometry<N, D, R>> for MatrixN<N, DimNameSum<D, U1>> where
    D: DimNameAdd<U1>,
    R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> Eq for Isometry<N, D, R> where
    R: Rotation<Point<N, D>> + Eq,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R: Rotation<Point<N, D>> + Clone> Clone for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn clone_from(&mut self, source: &Self)
1.0.0
[src]

Performs copy-assignment from source. Read more

impl<N: RealField, D: DimName + Copy, R: Rotation<Point<N, D>> + Copy> Copy for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Copy
[src]

impl<N: RealField + Display, D: DimName, R> Display for Isometry<N, D, R> where
    R: Display,
    DefaultAllocator: Allocator<N, D> + Allocator<usize, D>, 
[src]

impl<N: Debug + RealField, D: Debug + DimName, R: Debug> Debug for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField> Mul<Isometry<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, UnitComplex<N>>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<Isometry<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, UnitComplex<N>>

The resulting type after applying the * operator.

impl<'b, N: RealField> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, UnitComplex<N>>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField> Mul<&'b Isometry<N, U2, Unit<Complex<N>>>> for &'a UnitComplex<N> where
    DefaultAllocator: Allocator<N, U2, U1>, 
[src]

type Output = Isometry<N, U2, UnitComplex<N>>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<R> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b R> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Point<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Point<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Point<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Point<N, D>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = VectorN<N, D>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = VectorN<N, D>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = VectorN<N, D>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = VectorN<N, D>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Unit<VectorN<N, D>>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Unit<VectorN<N, D>>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Unit<VectorN<N, D>>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Unit<Matrix<N, D, U1, <DefaultAllocator as Allocator<N, D, U1>>::Buffer>>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Unit<VectorN<N, D>>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Translation<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Translation<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Translation<N, D>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Translation<N, D> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Translation<N, D> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Translation<N, D> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Translation<N, D> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName> Mul<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName> Mul<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the * operator.

impl<N: RealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the * operator.

impl<'a, N: RealField> Mul<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the * operator.

impl<'b, N: RealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField> Mul<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, N: RealField, D: DimName, R> Mul<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<'a, 'b, N: RealField, D: DimName, R> Mul<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the * operator.

impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Isometry<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Isometry<N, D, R>> for &'a Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, U1>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'a, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<Transform<N, D, C>> for &'a Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<'a, 'b, N, D: DimNameAdd<U1>, C: TCategoryMul<TAffine>, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> Mul<&'b Transform<N, D, C>> for &'a Isometry<N, D, R> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, D, U1> + Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, DimNameSum<D, U1>>, 
[src]

type Output = Transform<N, D, C::Representative>

The resulting type after applying the * operator.

impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<N: RealField, D: DimName, R> Div<R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, N: RealField, D: DimName, R> Div<R> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'b, N: RealField, D: DimName, R> Div<&'b R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b R> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Isometry<N, D, R>

The resulting type after applying the / operator.

impl<N: RealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'a, N: RealField, D: DimName> Div<Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'b, N: RealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField, D: DimName> Div<&'b Isometry<N, D, Rotation<N, D>>> for &'a Rotation<N, D> where
    DefaultAllocator: Allocator<N, D, D> + Allocator<N, D, U1>, 
[src]

type Output = Isometry<N, D, Rotation<N, D>>

The resulting type after applying the / operator.

impl<N: RealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the / operator.

impl<'a, N: RealField> Div<Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the / operator.

impl<'b, N: RealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField> Div<&'b Isometry<N, U3, Unit<Quaternion<N>>>> for &'a UnitQuaternion<N> where
    DefaultAllocator: Allocator<N, U4, U1> + Allocator<N, U3, U1>, 
[src]

type Output = Isometry<N, U3, UnitQuaternion<N>>

The resulting type after applying the / operator.

impl<N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, N: RealField, D: DimName, R> Div<Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Isometry<N, D, R>> for &'a Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, N: RealField, D: DimName, R> Div<Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<'a, 'b, N: RealField, D: DimName, R> Div<&'b Similarity<N, D, R>> for &'a Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Output = Similarity<N, D, R>

The resulting type after applying the / operator.

impl<N: RealField, D: DimName, R> MulAssign<Translation<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Translation<N, D>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> MulAssign<R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> MulAssign<&'b R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> MulAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> MulAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, 
[src]

impl<'b, N, D: DimNameAdd<U1>, C: TCategory, R: SubsetOf<MatrixN<N, DimNameSum<D, U1>>>> MulAssign<&'b Isometry<N, D, R>> for Transform<N, D, C> where
    N: Scalar + Zero + One + ClosedAdd + ClosedMul + RealField,
    DefaultAllocator: Allocator<N, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N, D, U1>, 
[src]

impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> DivAssign<R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> DivAssign<&'b R> for Isometry<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> DivAssign<Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<'b, N: RealField, D: DimName, R> DivAssign<&'b Isometry<N, D, R>> for Similarity<N, D, R> where
    R: AlgaRotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField + Hash, D: DimName + Hash, R: Hash> Hash for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Hash
[src]

default fn hash_slice<H>(data: &[Self], state: &mut H) where
    H: Hasher
1.3.0
[src]

Feeds a slice of this type into the given [Hasher]. Read more

impl<N, D: DimName, R> Arbitrary for Isometry<N, D, R> where
    N: RealField + Arbitrary + Send,
    R: AlgaRotation<Point<N, D>> + Arbitrary + Send,
    Owned<N, D>: Send,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn shrink(&self) -> Box<dyn Iterator<Item = Self> + 'static>

impl<N: RealField, D: DimName, R> Distribution<Isometry<N, D, R>> for Standard where
    R: AlgaRotation<Point<N, D>>,
    Standard: Distribution<N> + Distribution<R>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn sample_iter<R>(&'a self, rng: &'a mut R) -> DistIter<'a, Self, R, T> where
    R: Rng
[src]

Create an iterator that generates random values of T, using rng as the source of randomness. Read more

impl<N: RealField, D: DimName, R> Serialize for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>,
    R: Serialize,
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Serialize
[src]

impl<'de, N: RealField, D: DimName, R> Deserialize<'de> for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>,
    R: Deserialize<'de>,
    DefaultAllocator: Allocator<N, D>,
    Owned<N, D>: Deserialize<'de>, 
[src]

impl<N, D, R> Abomonation for Isometry<N, D, R> where
    N: RealField,
    D: DimName,
    R: Abomonation,
    Translation<N, D>: Abomonation,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> AbsDiffEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>> + AbsDiffEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

type Epsilon = N::Epsilon

Used for specifying relative comparisons.

default fn abs_diff_ne(&self, other: &Rhs, epsilon: Self::Epsilon) -> bool

The inverse of ApproxEq::abs_diff_eq.

impl<N: RealField, D: DimName, R> RelativeEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>> + RelativeEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

default fn relative_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_relative: Self::Epsilon
) -> bool

The inverse of ApproxEq::relative_eq.

impl<N: RealField, D: DimName, R> UlpsEq<Isometry<N, D, R>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>> + UlpsEq<Epsilon = N::Epsilon>,
    DefaultAllocator: Allocator<N, D>,
    N::Epsilon: Copy
[src]

default fn ulps_ne(
    &self,
    other: &Rhs,
    epsilon: Self::Epsilon,
    max_ulps: u32
) -> bool

The inverse of ApproxEq::ulps_eq.

impl<N: RealField, D: DimName, R: AlgaRotation<Point<N, D>>> One for Isometry<N, D, R> where
    DefaultAllocator: Allocator<N, D>, 
[src]

fn one() -> Self[src]

Creates a new identity isometry.

default fn is_one(&self) -> bool where
    Self: PartialEq<Self>, 
[src]

Returns true if self is equal to the multiplicative identity. Read more

impl<N: RealField, D: DimName, R> AbstractMagma<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn op(&self, O, lhs: &Self) -> Self

Performs specific operation.

impl<N: RealField, D: DimName, R> AbstractQuasigroup<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn prop_inv_is_latin_square_approx(args: (Self, Self)) -> bool where
    Self: RelativeEq<Self>, 

Returns true if latin squareness holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_inv_is_latin_square(args: (Self, Self)) -> bool where
    Self: Eq

Returns true if latin squareness holds for the given arguments. Read more

impl<N: RealField, D: DimName, R> AbstractSemigroup<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn prop_is_associative_approx(args: (Self, Self, Self)) -> bool where
    Self: RelativeEq<Self>, 

Returns true if associativity holds for the given arguments. Approximate equality is used for verifications. Read more

default fn prop_is_associative(args: (Self, Self, Self)) -> bool where
    Self: Eq

Returns true if associativity holds for the given arguments.

impl<N: RealField, D: DimName, R> AbstractLoop<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> AbstractMonoid<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn prop_operating_identity_element_is_noop_approx(args: (Self,)) -> bool where
    Self: RelativeEq<Self>, 

Checks whether operating with the identity element is a no-op for the given argument. Approximate equality is used for verifications. Read more

default fn prop_operating_identity_element_is_noop(args: (Self,)) -> bool where
    Self: Eq

Checks whether operating with the identity element is a no-op for the given argument. Read more

impl<N: RealField, D: DimName, R> AbstractGroup<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> TwoSidedInverse<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> Identity<Multiplicative> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

default fn id(O) -> Self

Specific identity.

impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Rotation<N1, D> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: AlgaRotation<Point<N2, D>> + SupersetOf<Self>,
    DefaultAllocator: Allocator<N1, D, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U3, R>> for UnitQuaternion<N1> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: AlgaRotation<Point3<N2>> + SupersetOf<Self>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, R> SubsetOf<Isometry<N2, U2, R>> for UnitComplex<N1> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: AlgaRotation<Point2<N2>> + SupersetOf<Self>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, R> SubsetOf<Isometry<N2, D, R>> for Translation<N1, D> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, R1, R2> SubsetOf<Isometry<N2, D, R2>> for Isometry<N1, D, R1> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D: DimName, R1, R2> SubsetOf<Similarity<N2, D, R2>> for Isometry<N1, D, R1> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R1: Rotation<Point<N1, D>> + SubsetOf<R2>,
    R2: Rotation<Point<N2, D>>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R, C> SubsetOf<Transform<N2, D, C>> for Isometry<N1, D, R> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    C: SuperTCategoryOf<TAffine>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N1, N2, D, R> SubsetOf<Matrix<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output, <DefaultAllocator as Allocator<N2, <D as DimNameAdd<U1>>::Output, <D as DimNameAdd<U1>>::Output>>::Buffer>> for Isometry<N1, D, R> where
    N1: RealField,
    N2: RealField + SupersetOf<N1>,
    R: Rotation<Point<N1, D>> + SubsetOf<MatrixN<N1, DimNameSum<D, U1>>> + SubsetOf<MatrixN<N2, DimNameSum<D, U1>>>,
    D: DimNameAdd<U1> + DimMin<D, Output = D>,
    DefaultAllocator: Allocator<N1, D> + Allocator<N1, D, D> + Allocator<N1, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<N2, DimNameSum<D, U1>, DimNameSum<D, U1>> + Allocator<(usize, usize), D> + Allocator<N2, D, D> + Allocator<N2, D>, 
[src]

default fn from_superset(element: &T) -> Option<Self>

The inverse inclusion map: attempts to construct self from the equivalent element of its superset. Read more

impl<N: RealField, D: DimName, R> Transformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> ProjectiveTransformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> AffineTransformation<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Rotation = R

Type of the first rotation to be applied.

type NonUniformScaling = Id

Type of the non-uniform scaling to be applied.

type Translation = Translation<N, D>

The type of the pure translation part of this affine transformation.

impl<N: RealField, D: DimName, R> Similarity<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

type Scaling = Id

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation inverse's pure scaling part to a vector.

impl<N: RealField, D: DimName, R> Isometry<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

impl<N: RealField, D: DimName, R> DirectIsometry<Point<N, D>> for Isometry<N, D, R> where
    R: Rotation<Point<N, D>>,
    DefaultAllocator: Allocator<N, D>, 
[src]

Auto Trait Implementations

impl<N, D, R> !Send for Isometry<N, D, R>

impl<N, D, R> !Sync for Isometry<N, D, R>

Blanket Implementations

impl<T> ToString for T where
    T: Display + ?Sized
[src]

impl<T> ToOwned for T where
    T: Clone
[src]

type Owned = T

impl<T> From for T[src]

impl<T, U> Into for T where
    U: From<T>, 
[src]

impl<T, U> TryFrom for T where
    U: Into<T>, 
[src]

type Error = Infallible

The type returned in the event of a conversion error.

impl<T> Borrow for T where
    T: ?Sized
[src]

impl<T> Any for T where
    T: 'static + ?Sized
[src]

impl<T> BorrowMut for T where
    T: ?Sized
[src]

impl<T, U> TryInto for T where
    U: TryFrom<T>, 
[src]

type Error = <U as TryFrom<T>>::Error

The type returned in the event of a conversion error.

impl<T> Same for T

type Output = T

Should always be Self

impl<T, Right> ClosedMul for T where
    T: Mul<Right, Output = T> + MulAssign<Right>, 

impl<T, Right> ClosedDiv for T where
    T: Div<Right, Output = T> + DivAssign<Right>, 

impl<SS, SP> SupersetOf for SP where
    SS: SubsetOf<SP>, 

impl<T> MultiplicativeMagma for T where
    T: AbstractMagma<Multiplicative>, 

impl<T> MultiplicativeQuasigroup for T where
    T: AbstractQuasigroup<Multiplicative> + ClosedDiv<T> + MultiplicativeMagma, 

impl<T> MultiplicativeLoop for T where
    T: AbstractLoop<Multiplicative> + MultiplicativeQuasigroup + One

impl<T> MultiplicativeSemigroup for T where
    T: AbstractSemigroup<Multiplicative> + ClosedMul<T> + MultiplicativeMagma, 

impl<T> MultiplicativeMonoid for T where
    T: AbstractMonoid<Multiplicative> + MultiplicativeSemigroup + One

impl<T> MultiplicativeGroup for T where
    T: AbstractGroup<Multiplicative> + MultiplicativeLoop + MultiplicativeMonoid, 

impl<R, E> Transformation for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg, 

impl<R, E> ProjectiveTransformation for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg, 

impl<R, E> AffineTransformation for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg, 

type Rotation = Id<Multiplicative>

Type of the first rotation to be applied.

type NonUniformScaling = R

Type of the non-uniform scaling to be applied.

type Translation = Id<Multiplicative>

The type of the pure translation part of this affine transformation.

default fn append_rotation_wrt_point(
    &self,
    r: &Self::Rotation,
    p: &E
) -> Option<Self>

Appends to this similarity a rotation centered at the point p, i.e., this point is left invariant. Read more

impl<R, E> Similarity for R where
    E: EuclideanSpace<RealField = R>,
    R: RealField + SubsetOf<R>,
    <E as EuclideanSpace>::Coordinates: ClosedMul<R>,
    <E as EuclideanSpace>::Coordinates: ClosedDiv<R>,
    <E as EuclideanSpace>::Coordinates: ClosedNeg, 

type Scaling = R

The type of the pure (uniform) scaling part of this similarity transformation.

default fn translate_point(&self, pt: &E) -> E

Applies this transformation's pure translational part to a point.

default fn rotate_point(&self, pt: &E) -> E

Applies this transformation's pure rotational part to a point.

default fn scale_point(&self, pt: &E) -> E

Applies this transformation's pure scaling part to a point.

default fn rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation's pure rotational part to a vector.

default fn scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation's pure scaling part to a vector.

default fn inverse_translate_point(&self, pt: &E) -> E

Applies this transformation inverse's pure translational part to a point.

default fn inverse_rotate_point(&self, pt: &E) -> E

Applies this transformation inverse's pure rotational part to a point.

default fn inverse_scale_point(&self, pt: &E) -> E

Applies this transformation inverse's pure scaling part to a point.

default fn inverse_rotate_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation inverse's pure rotational part to a vector.

default fn inverse_scale_vector(
    &self,
    pt: &<E as EuclideanSpace>::Coordinates
) -> <E as EuclideanSpace>::Coordinates

Applies this transformation inverse's pure scaling part to a vector.